Have Questions?  Need Expert Answers?  JOIN LUNCH N' LEARNS!

Get Embedding for Text

Prev Next
Step Details
Introduced in Version9.0.0
Last Modified in Version9.12.0
LocationAI > AWS Bedrock

The Get Embedding for Text step obtains numerical vector representations (embeddings) for the given text input data. Text embeddings represent the semantic meaning of text, enabling various downstream natural language processing (NLP) tasks, such as text classification, clustering, or similarity analysis.

Prerequisites 

This step requires the AWS Bedrock module to be installed before it will be available in the toolbox.

Version 9 users must install the AWS Bedrock dependency in order for these steps to appear.


Properties

AWS Bedrock Settings

PropertyDescriptionData Type
Specify Model NameWhen enabled, makes a dropdown box appear permitting the user to select the model that gets utilized.Boolean
Specify Model Prefix NameIf the model name requires a prefix, enable this setting and add the prefix to the box that appears.Boolean

AWS Settings

PropertyDescriptionData Type
Specify AWS CredentialsWhen enabled, creates two new inputs, AWS API Access Key and AWS API Secret Key forcing the user to input required credentials prior to a prompt running.Boolean
AWS RegionAllows for region selection.AmazonAWSRegion

Inputs

PropertyDescriptionData Type
Text to ProcessThe text that needs to be represented as vector embeddings.String

Outputs

PropertyDescriptionData Type
Done


Resulting EmbeddingsNumerical vector representations (embeddings) of the input text.AITextEmbedding


Example Inputs and Outputs



Step Changes

DescriptionVersionRelease DateDeveloper Task
A new property has been added to all AWS Bedrock steps called Specify Model Prefix Name.
9.12June 2025[DT-044585]