Have Questions?  Need Expert Answers?  JOIN LUNCH N' LEARNS!

Get Embedding for Text

Prev Next
Step Details
Introduced in Version8.17.0
Last Modified in Version9.13.0
LocationAI > Google Vertex

The Get Embedding for Text step obtains numerical vector representations (embeddings) for text data. Text embeddings represent the semantic meaning of text, enabling various downstream natural language processing (NLP) tasks, such as text classification, clustering, or similarity analysis.

Prerequisites 

Refer to Google Vertex AI for setup instructions before using the step.

Additionally, ensure that the Google Cloud module dependency is installed, as it is required for this step to function.

Users on v9 will need to create a Project dependency.


Properties

[Settings]

PropertyDescriptionData Type
OverridePredictionParametersWhen enabled, overrides default prediction parameters permitting custom parameters to be created.Boolean
ModelNameSpecifies the Vertex AI embedding model to use when generating text embeddings. This is a free-text field where users must enter a valid embedding model identifier (e.g., text-embedding-004). The model must be available in the configured GCP project and region.String
SetSpecificModelWhen enabled, creates a new textbox allowing the selection of a specified AI model.Boolean

GCP Settings

PropertyDescriptionData Type
Specify GCP SettingsWhen enabled, creates a new box that, when edited, permits specific GCP selection.Boolean

Settings

PropertyDescriptionData Type
JSON CredentialsIf there have been predefined JSON credentials established, those may be selected hereString

Inputs

PropertyDescriptionData Type
Text to ProcessThe text that needs to be represented as vector embeddings.String

Outputs

PropertyDescriptionData Type
Resulting EmbeddingsNumerical vector representations (embeddings) of the input text.String

Example Inputs and Outputs